The kinase inhibitor O6-cyclohexylmethylguanine (NU2058) potentiates the cytotoxicity of cisplatin by mechanisms that are independent of its effect upon CDK2.
نویسندگان
چکیده
O(6)-Cyclohexylmethylguanine (NU2058) was developed as an inhibitor of CDK2 and was previously shown to potentiate cisplatin cytotoxicity in vitro. The aim of this study was to investigate the mechanism of cisplatin potentiation by NU2058. SQ20b, head and neck cancer cells were treated for 2h with NU2058 (100 microM) and then for a further 2h with cisplatin and NU2058. NU2058 increased cisplatin cytotoxicity, by clonogenic assay, with a dose modification factor (DMF) of 3.1. NU2058 increased total intracellular platinum levels 1.5-fold, and platinum-DNA adduct levels twofold. Furthermore, the cisplatin-DNA adducts formed were more toxic in the presence of NU2058. To investigate whether the effects of NU2058 on cisplatin adduct levels and toxicity were dependent on CDK2 activity, additional CDK2 inhibitors were tested. NU6230 (CDK2 IC(50) 18 microM) was equipotent to NU2058 (CDK2 IC(50) 17 microM) as a CDK2 inhibitor in cell-free and cell-based assays, yet did not potentiate cisplatin cytotoxicity. Furthermore, NU6102 was >1000-fold more potent than NU2058 as a CDK2 inhibitor (CDK2 IC(50) 5 nM) yet was no more active than NU2058 in potentiating cisplatin. NU2058 also potentiated melphalan (DMF 2.3), and monohydroxymelphalan (1.7), but not temozolomide or ionising radiation. Whilst NU2058 increased melphalan cytotoxicity, it did not increase melphalan-DNA adduct formation. These studies demonstrate that NU2058 alters the transport of cisplatin, causing more Pt-DNA adducts, as well as sensitizing cells to cisplatin- and melphalan-induced DNA damage. However, the effects of NU2058 are independent of CDK2 inhibition.
منابع مشابه
Increased Cytotoxicity of Cisplatin in SK-MEL 28 Melanoma Cells upon Down-Regulation of Melanoma Inhibitor of Apoptosis Protein
Background: Malignant melanoma is a highly metastatic cutaneous cancer and typically refractory to chemotherapy. Deregulated apoptosis has been identified as a major cause of cancer drug resistance, and upregulated expression of the inhibitor of apoptosis protein melanom, an inhibitor of apoptosis (ML-IAP) is frequent in melanoma. Methods: Based on the conclusion that ML-IAP expression contribu...
متن کاملCdk2-dependent phosphorylation of p21 regulates the role of Cdk2 in cisplatin cytotoxicity.
Cisplatin cytotoxicity is dependent on cyclin-dependent kinase 2 (Cdk2) activity in vivo and in vitro. We found that an 18-kDa protein identified by mass spectrometry as p21(WAF1/Cip1) was phosphorylated by Cdk2 starting 12 h after cisplatin exposure. The analysis showed it was phosphorylated at serine 78, a site not previously identified. The adenoviral transduction of p21 before cisplatin exp...
متن کاملEvaluation of anti-proliferative and anti-cancer properties of hydroalcoholic extract of Jaft and Cisplatin on AGS cell line of gastric cancer
Abstract Background: Oak placenta(jaft) extract has potent antioxidant, anti-proliferative and anti-cancer activity, and other therapeutic properties. The aim of this study is to investigate the effect of the hydroalcoholic extract of the Jaft on the cytotoxicity of cisplatin on the AGS gastric adenocarcinoma cell line. Materials and methods: The MTT method was used to check cell viability...
متن کاملProtection of cisplatin cytotoxicity by an inactive cyclin-dependent kinase.
Cisplatin cytotoxicity is dependent on cyclin-dependent kinase 2 (Cdk2) activity in vivo and in vitro. A Cdk2 mutant (Cdk2-F80G) was designed in which the ATP-binding pocket was altered. When expressed in mouse kidney cells, this protein was kinase inactive, did not inhibit endogenous Cdk2, but protected from cisplatin. The mutant was localized in the cytoplasm, but when coexpressed with cyclin...
متن کاملCytoplasmic initiation of cisplatin cytotoxicity.
The mechanism of action of cisplatin as a chemotherapeutic agent has been attributed to DNA binding, while its mechanism of action as a nephrotoxin is unresolved. Only approximately 1% of intracellular cisplatin interacts with DNA, primarily forming intrastrand cross-linked adducts, and many studies have implicated both nuclear and cytoplasmic causes of cisplatin-induced death in cultured cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical pharmacology
دوره 77 10 شماره
صفحات -
تاریخ انتشار 2009